Conservation and Convergence of Colour Genetics: MC1R Mutations in brown Cavefish

نویسنده

  • Nicholas I. Mundy
چکیده

One of the most striking observations in nature is when similar phenotypes appear independently, such as wings in birds and bats, or melanism in moths and mice. These examples of so-called convergent evolution naturally lead us to ponder the question of genetic repeatability, i.e., the extent to which similar phenotypes that evolved in parallel share the same genetic mechanisms. Cave-dwelling organisms provide an attractive system for studying genetic repeatability, since populations in geographically isolated caves often undergo striking convergent evolution in response to the drastically altered environment, with reduced pigmentation and vision being particularly common phenotypes. In a paper recently published in PLoS Genetics [1], Gross et al. find that different mutations at the same locus, MC1R (Melanocortin-1 receptor), underlie the parallel evolution of reduction of pigmentation in a teleost fish, the Mexican cave tetra Astyanax mexicanus. The MC1R has been widely implicated in the evolution of colouration in birds and mammals, and the current results add to a growing body of literature showing that genetic repeatability in evolution is surprisingly common, although by no means pervasive (e.g., [2]). A role for MC1R in teleost pigmentation is also interesting in the light of differences in pigmentary biology between homeothermic amniotes (mammals and birds) and other vertebrates. The authors studied the brown mutation, a recessive mutation in which A. mexicanus have paler skin and eyes than fish from surface-dwelling populations, and found that both the number of melanin-producing pigment cells (melanophores) and their melanin content were decreased in the dorsal skin. Complementation tests had previously shown that the brown mutation was probably at the same locus in several isolated caves in Northeastern Mexico, including Pachón, Yerbaniz/Japonés, Curva, and Piedras. Quantitative trait locus (QTL) mapping on an F2 derived from a surface6Pachón cave brown cross identified a single peak in logarithm of the odds (LOD) score in the genome that contained the MC1R locus based on comparative mapping to zebrafish. The authors found that brown cavefish from Pachón carried an early frameshift in MC1R (D24,25), whereas the brown mutation in the Yerbaniz/Japonés population carried a missense alteration, R164C— remarkably, the identical mutation at the homologous MC1R residue in humans causes a loss-of-function mutation that gives rise to red hair and fair skin [3]. In contrast, there were no amino-acid– changing mutations in several other populations, including Curva and Piedras, suggesting that cis-regulatory mutations in MC1R may be involved in these cases. Confirmation that these MC1R mutations have functional consequences came from experiments exploiting gene knockdown technology in zebrafish. Consistent with a hypothesis of reduced or absent MC1R function in the two coding mutations, zebrafish treated with a MC1R morpholino had reduced pigmentation that could be rescued by wild-type Astyanax MC1R, but not by the D24,25 or R164C variants. These results are interesting because, up until now, the sole function of MC1R in fish and other poikilotherms was considered to be short term physiological colour change to match the environment, as in frogs and chameleons [4]. MC1R is a seven-transmembrane G-protein–coupled receptor expressed by melanophores that, when activated by the hormone MSH (melanocyte-stimulating hormone), causes intracellular dispersion of membranebound pigment granules (melanosomes) within the melanophore leading to darker colouration. This process is reversed in response to a second hormone, MCH (melanin-concentrating hormone) [4]. The results from A. mexicanus show that MC1R can also function earlier in the pigmentation pathway in teleosts to affect both melanophore number and the amount of melanin in each melanophore. It will be interesting to investigate these novel functions in more detail, including how they relate to other genes involved in pigment cell development in fish [5]. The comparison with MC1R function in mammals and birds is instructive. In these lineages, pigment cells slowly transfer melanin granules to adjacent keratinocytes using a different set of biochemical and cell biologic pathways, and these cells are termed melanocytes to reflect this difference. Consequently, mammals and birds are unable to change their colour rapidly. Instead, a major function of MC1R in mammals and birds is to act as a switch between synthesis of dark eumelanin and phaeomelanin, a pale or reddish melanin that is apparently absent from teleosts. Thus, evolution of dark/pale colouration has involved MC1R mutations repeatedly not only in birds and mammals [6,7] (and probably also reptiles [8]), but now also in fish [1], in spite of many differences in mechanistic detail. An interesting difference, however, is that the MC1R variants in cavefish affect eye colour as well as body colour, whereas MC1R effects on eye colour have never been described in birds and mammals. More broadly, although colouration in fish (in contrast to mammals) is determined to a great extent by migration, proliferation, and cell–cell interactions among melanophores and other pigment cells [9], the present study adds to

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Role for Mc1r in the Parallel Evolution of Depigmentation in Independent Populations of the Cavefish Astyanax mexicanus

The evolution of degenerate characteristics remains a poorly understood phenomenon. Only recently has the identification of mutations underlying regressive phenotypes become accessible through the use of genetic analyses. Focusing on the Mexican cave tetra Astyanax mexicanus, we describe, here, an analysis of the brown mutation, which was first described in the literature nearly 40 years ago. T...

متن کامل

Incidence of Mutation for Silver Coat Color in Black Forest Horses

Black Forest horses are typically chestnut colored with flaxen mane and tail. However, as their coat color can get very dark, they are sometimes also indicated as silver, a color depending on a black base color. To analyse if the silver allele is present in the Black Forest horse population, we genotyped 250 horses of this breed for formerly reported coat color mutations within MC1R and SILV. A...

متن کامل

Melanocortin receptor 1 (MC1R) mutations and coat color in pigs.

The melanocortin receptor 1 (MC1R) plays a central role in regulation of eumelanin (black/brown) and phaeomelanin (red/yellow) synthesis within the mammalian melanocyte and is encoded by the classical Extension (E) coat color locus. Sequence analysis of MC1R from seven porcine breeds revealed a total of four allelic variants corresponding to five different E alleles. The European wild boar poss...

متن کامل

Molecular Genetics of Coat Colour in Pigs

1 Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Bologna, Italy. Correspondence to: [email protected], [email protected] AbStrAct Coat colour in Sus scrofa has been the matter of pioneering genetics studies carried out at the beginning of the last century. Since then, classical genetics studies have assumed that several loci affect this trait in pigs. W...

متن کامل

The genetics of brown coat color and white spotting in domestic yaks (Bos grunniens).

Domestic yaks (Bos grunniens) exhibit two major coat color variations: a brown vs. wild-type black pigmentation and a white spotting vs. wild-type solid color pattern. The genetic basis for these variations in color and distribution remains largely unknown and may be complicated by a breeding history involving hybridization between yaks and cattle. Here, we investigated 92 domestic yaks from Ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Genetics

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2009